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Introduction

The purpose of this proposal is to introduce and integrate architecture as a study subject in the math
curriculum for high school grade levels within the public school system at New Haven, CT. Students will
conclude this program by creating an architectural model that demonstrates the mathematical discoveries of
their work and study. While discoveries are in the traditional areas of Algebra, Geometry, Trigonometry, and
Calculus, the process of learning and teaching adheres to the architectural paradigm of "...less is more."[1]

To empower students with those architectural principles that delineate an historic relevance for the precept
that "...less is more," this curriculum unit combines a series of presentations that explore the formal
definitions of geodesic geometry in Architecture and, in particular, the engineered geometry, patterns, and
systems that modularize those design forms. The dynamics of teaching and learning with these tangible forms
is intended to enhance the visual and intellectual perceptions of young mathematicians, as they contend with
less intangible concepts. Therefore, the educational goals strive to reach a more profound level of awareness
and with less compromise. Teaching the project presented in this unit describes my experiences in organizing,
managing, supervising, and testing this program. To clarify the development process of this project, three (3)
phases will be presented as follows:

Phase 1: Background and Program Description

This phase describes the project-launch, establishes criteria for the selected students, and a bibliography for
student readings. This phase also describes the selected architecture that will be compared and contrasted,
promoting mathematical axioms and theorems integrated within the mathematics curricula. Buckminster
Fuller and his many inventions will be introduced in this phase.
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Phase 2: Implementation Models

This phase will be a general overview and introduction to architecture and architectural engineering. Students
will be introduced to the architectural and engineering principles that the selected structure exemplify. Site
locations will span the global and include several in New York City for onsite visits. Some of these principles
will further associate with a variety of interdisciplinary teachings, in English, History, or Science.

Phase 3: Deployment and/or Execution of the Program

The third phase will explain how the project will be executed. The program will be introduced to the students
in two parts. In the first part students will review some of the more popular sites. This will be by Internet
content. The second part will be dedicated to a hands-on approach. Students will collect all their data learned
during the program and then, they will create an architectural model that demonstrates the mathematical
discoveries of their work and study. Study forms and shapes include: tetrahedrons; octahedrons;
icosahedrons; and cuboctahedrons.

(Recommended for Mathematics (Algebra, Calculus, Geometry, and Trigonometry), grades 9 - 12.)

Image reference: http://www.kwsi.com/ynhti/images/image01

Phase 1: Background and Program Description

This program will enable students to respond to a series of sequential assignments that culminate and
terminate in one or more definitions of a geodesic dome and its components. These definitions will be in
Algebra, Calculus, Geometry, Trigonometry, or some combination thereof.

A geodesic dome is an almost spherical structure based on a network of struts arranged on great circles
(geodesics) lying on the surface of a sphere. The geodesics intersect to form triangular elements that create
local triangular rigidity and distribute the stress. It is the only man made structure that gets proportionally
stronger as it increases in size.

Of all known structures made from linear elements, a geodesic dome has the highest ratio of enclosed volume
to weight. Geodesic domes are far stronger as units than the individual struts would suggest. It is common for
a new dome to reach a "critical mass" during construction, shift slightly, and lift any attached scaffolding from
the ground.

Geodesic domes are designed by taking a Platonic solid, such as an icosahedron, and then filling each face
with a regular pattern of triangles bulged out so that their vertices lie in the surface of a sphere. The trick is
that the sub-pattern of triangles should create "geodesics", great circles to distribute stress across the
structure.
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There is reason to believe that geodesic construction can be effectively extended to any shape, although it
works best in shapes that lack corners to concentrate stress.

The Math Lessons

a) The Algebra of a Geodesic Dome.

Although the Geometry lesson below explores both the necessary and sufficient conditions for tensegrity
equilibria, static models of tensegrity structures reduce to linear algebra problems. After first characterizing
the problem in a vector space where direction cosines are not needed, the components of all member vectors
are described. While our approach enlarges (by a factor of 3) the vector space required describing the
problem, the advantage of enlarging the vector space makes the mathematical structure of the problem
amenable to linear Algebra treatment. Using the linear algebraic techniques, many variables are eliminated
from the final existence equations however; the Geometry approach most fully addresses the understandings
of Tensegrity.

b) The Geometry of a Geodesic Dome.

The Geometry lesson characterizes the necessary and sufficient conditions for tensegrity equilibria. Static
models of tensegrity structures are reduced to linear algebra problems, after first characterizing the problem
in a vector space where direction cosines are not needed. This is possible by describing the components of all
member vectors. While our approach enlarges (by a factor of 3) the vector space required describing the
problem, the advantage of enlarging the vector space makes the mathematical structure of the problem
amenable to linear Algebra treatment. Using the linear algebraic techniques, many variables are eliminated
from the final existence equations however; the Geometry approach most fully addresses the understandings
of Tensegrity.

Tensegrity is the pattern that results when push and pull have a win-win relationship with each other. The pull
is continuous and the push is discontinuous. The continuous pull is balanced by the discontinuous push
producing an integrity of tension - compression.

Push and pull seem so common and ordinary in our experience of life that we humans think little of these
forces. Most of us assume they are simple opposites. In and out or back and forth, force that is directed in one
direction or the opposite direction.

>

Fuller explained that these fundamental phenomena were not opposites, but complements that could always
be found together. He further explained that push is divergent while pull is convergent.

Imagine pushing a yellow ping pong ball on a smooth table with the point of a sharp pencil. The ball would
always roll away from the direction of the push, first rolling one way then the other. Push is divergent. Now
imagine the difference, if you attach a string to the ping pong ball with tape, and pull it toward you. No matter
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how other forces might influence the ball to roll away from you, the string would always bring it to you more
and more directly. Pull is convergent.

Image reference: http://www.kwsi.com/ynhti/images/image02
PUSH

Image reference: http://www.kwsi.com/ynhti/images/image03
DIVERGES

Image reference: http://www.kwsi.com/ynhti/images/image04
CONVERGES

Image reference: http://www.kwsi.com/ynhti/images/image05
PULL

Another example from another common experience occurs when pulling a trailer with a car. While pulling
uphill, the pull is against gravity; and the trailer converges smoothly behind my car. If the trailer begins to
sway, an increase in pulling by accelerating will dampen the sway. In comparison, if the trailer begins to sway
while traveling downhill, the trailer may begin to push. This produces a strong side to side force, or
divergence. The trailer will also begin to sway from side to side. This push is divergent. When the trailer
begins to push us, acceleration will re-establish pull. This pull is convergent. The trailer will respond by
straightening and regain the original equilibrium. Therefore, contrasting fundamentals always co-exist in pairs:
Push and Pull; or Compression and Tension; or Repulsion and Attraction.

c) The Trigonometry of a Geodesic Dome.

Drawing a Grid Diagram

Image reference: http://www.kwsi.com/ynhti/images/image06
(1) Draw an equilateral triangle.

(2) Subdivide the edges into N parts for N frequency.

(3) Join the points of subdivision with a 3 way grid.

(4) Start at the top vertex and number all the crossing points for the frequency N (the 1st point will be 0, 0
and the last point will be N, N) every point has a two (2) number designation.

(5) Draw the 3 medians of the face triangle.

(6) The medians describe 6 right triangles, each containing the whole symmetry system of the polygon. This
pattern is the basic quanta of this system. The structure consists of repetition of this.

(7) If the structure considered is spherical, chord factors are only needed for the break down edges that lie
partly or completely within the symmetry triangle.
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(8) For a sphere, the only coordinates required are the end points of the edges contained by the symmetry
triangles.

(9) The system repeats symmetrically.

(10) If the top left symmetry triangle is used the numbers to be manipulated are handier as many values are
0.

Explaining the Geodesic Algorithms

The geodesic algorithm is the mathematical procedure for finding the strut lengths of a geodesic dome. This
algorithm utilizes spherical trigonometry to solve for spherical coordinates of the vertex points of a facet
diagram for a given frequency and radius dome. Then the chordal distances between adjacent vertices are
computed using the spherical coordinate distance formula. These distances are the strut lengths.

Solving for the vertex coordinates involves solving a series of 4 spherical triangles.
Image reference: http://www.kwsi.com/ynhti/images/image07

Diagram 1: Begin with a spherical icosahedral facet (spherical triangular side) with dimensions of 72 degrees
at each vertex angle (A, B and C) and sides (a, b and c) of 63 degrees, 26 minutes and 06 sec. (Note: in
spherical trig, sides are dimensioned in terms of angles with respect to dome center.) With a frequency of F,
the sides are divided into F parts; so that Sides b' and a' are known (selected so that the vertex to be
calculated is intersected) as well as Angle C. Using spherical trig equations 1, 2 and 3, Angle o is found for
use in Solution 2. These 3 equations and equation 4 embody the Side-Angle-Side (SAS) Subroutine.

Image reference: http://www.kwsi.com/ynhti/images/image08

Diagram 2: Angle A is known to be 72 Degrees and b" and ¢" are known (selected so that the vertex to be
calculated is intersected ). Angle y is to be found, so again equations 1, 2 and 3 (the SAS Subroutine) are used
to solve for y. Both angles o and y are used in Diagram 3 (Solution 3).

Image reference: http://www.kwsi.com/ynhti/images/image09

Diagram 3: Using Angles o and y and the difference between Sides b' and b" (= Side b"') we solve for X. This
time, equations 5, 6 and 7 (the Angle-Side-Angle (ASA) Subroutine) are used to obtain Side X.

Image reference: http://www.kwsi.com/ynhti/images/imagel0

Diagram 4: The final step in obtaining the spherical coordinates for a given vertex is from Side b', Side X and
Angle o from which we can obtain Angle Z (using Eq. 1, 2 and 3) and Side Y (using Eq. 4 ) as the coordinates of
point P.

The coordinates for adjacent vertices are applied to Equation 8 to obtain the strut lengths, which are the
chordal distances between the vertices.
Spherical Trigonometry Equations

Note: Both angles and sides should be measured angularly in spherical trig.
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SAS

With equations 1, 2 and 3 an angle (o) can be found given 2 sides (A and B) and the included angle B
(1) o + d = 2 arctan ([cos1/2(a-b) / cos1/2(a+b)] cot B)

(2) o -d = 2 arctan ([sin1/2(a-b) / sin1/2(a+b)] cot B)

(3) 0 = [(0+d)+(0-d)]/2

the third side (C) is solved for using eq. 4 after solving eq. 1, 2 and 3

(4) ¢ = 2 arctan ([sin 1/2(o+d) / sin 1/2(o-d)] tan 1/2(a-b) )

(where o, d B are angles ; a, b and c are sides)

ASA

With Equations 5, 6 and 7 a side (a) can be found given 2 angles (o and d) and the included side (c)
(5) a + b =2 arctan ([cos1/2(o-d) / cos1/2(o+d)] tan 1/2c)

(6) a-b = 2 arctan ([sin 1/2(o-d) / sin1/2(0o+d)] tan 1/2c)

(7) a = [(a+b)+(a-b)]/2

(where a, b and c are sides ; o and d are angles)

From the first 7 equations, the polar coordinates of each point on a grid can be derived. These coordinates can
then be plugged into the Chordal Distance Formula (Equation #8) yielding the strut (chord) length between 2
points on a sphere.

(8) D =[r(1)*2 + r(2)**2 - 2*r(1)*r(2)*(cos(d(1))*cos(d(2)) + cos (o(1)-0(2)) * sin d(1) * sin d(2)]"~1/2
in the spherical case r(1) = r(2) = 1.
Chord Factors and Base Ratio

After the strut lengths have been found, the repetitive pattern within the facet is established by graphical
construction of the medians of the facet and numerical balancing of strut length distribution to obtain overall
symmetry within the facet while maintaining the major arc lengths. Balancing is actually averaging; for each
strut position in the symmetry triangle take the average of all strut lengths in the facet at that particular
locus.

The resulting balanced strut lengths are then reduced to the most general form called the base ratio (Chord
Factor) by dividing the strut lengths by the icosa-edge strut length. This yields a value of 1 for icosa-struts and
a slightly higher value for the others. This base ratio is easily remembered and is used for any radius dome of
the particular frequency. After the base ratios have been derived, further use of the geodesemetry algorithm
is unnecessary and even ill advised because it is not symmetrical (also much slower ).

There is a set of unique Base Ratios (also called Chord Factors) for each frequency, regardless of the radius.
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Uniform dimensions, chord factors and ratios may be listed for any size dome. The only numerical variable in
geodesic spherical structures is that of the systems radius.

The name chord factor is assigned to all the constant lengths of a spheres connecting lines whether between
any 2 spherical surface lengths or between 2 concentric spheres that are inter-triangularly trussed (or related
structuring, i.e. door openings).

The spherical surface angles of the sphere and the central angles may be expressed in the same decimal
fractions - which remain constant for any size sphere since they are fractions of a unit finite whole system.

Central angles of great circles are defined by 2 radii, the outer ends of which are connected by both an arc
and a chord- which arc and chord are directly proportional to each unique such central angle.

The chord and the 2 radii form an isosceles triangle. The distance between the mid-arc and the mid-chord is
called the arc altitude.

The frequency of modular subdivision of the edge of the icosahedrons facets may be multiplied at will once
the spherical trigonometry rates of change of central and surface angle subdivisions have been solved. This is
the essence of geodesic structures. In order to facilitate interchangeability of struts between domes, domes of
consecutive frequencies can be based on a standard icosa-edge size. Within a series, icosa-edge struts remain
the same and the radius divided by the frequency is constant (i.e. series number = radius/frequency or series
x freq. = rad. ). For example, consider the #4 Series with a 4.43 Icosaedge strut: 4 x 2 freq. = 8'rad. , 4 x 3
freq. = 12'rad. , 4 x 4 freq. = 16' rad. , etc. Building domes of a given series makes for interchangeable parts
while disregarding or switching series means more and different strut sizes.

d) The Calculus of a Geodesic Dome

A geodesic is a locally length-minimizing curve. Equivalently, it is a path that a particle which is not
accelerating would follow. Within each plane, the geodesic permutations are straight lines. Across the sphere,
the geodesic permutations are large circles (like the equator). Whereas the geodesics within space depend on
the Riemannian metric; and also affects the interpretations of distance and acceleration.

Geodesics preserve a direction on a surface (Tietze 1965, pp. 26-27) and have many other interesting
properties. The to any point of a geodesic arc lies along the normal to a surface at that point (Weinstock 1974,
p. 65).

Furthermore, no matter how a is distorted, an infinite number of closed geodesics exist on it. This general

result, demonstrated in the early 1990s, extended earlier work by Birkhoff, who proved in 1917 that there

exists at least one closed geodesic on a distorted sphere, and Lyusternik and Schnirelmann, who proved in
1923 that there exist at least three closed geodesics on such a sphere (Cipra 1993, p. 28).

For a surface defined parametrically by x = x(u, v) , y = y(u, v) , and z = z(u, v) , the geodesic can be
found by minimizing the arc length

(formulas available in print form)

A surface of revolution is a surface generated by rotating a two-dimensional curve about an axis. The resulting
surface therefore always has azimuthal symmetry. Examples of surfaces of revolution include the apple, cone
(excluding the base), conical frustum (excluding the ends), cylinder (excluding the ends), Darwin-de Sitter
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spheroid, Gabriel's horn, hyperboloid, lemon, oblate spheroid, paraboloid, prolate spheroid, pseudosphere,
sphere, spheroid, and torus (and its generalization, the toroid).

For a surface of revolution in which y = g(x) and is rotated about the x-axis so that t

(formulas available in print form)

Phase 2: Implementation Models
Build a Geodesic Dome Model

One certain way to understand the characteristics and construction of a geodesic dome is to build a model of
one. The following directions produce a low-cost, easy to assemble model of one type of geodesic dome. The
triangular panels described below should be constructed from heavy paper or transparencies, and then
connected with paper fasteners or glue.

Geodesic domes are usually hemispheres (parts of spheres, like half a ball) made up of triangles. The parts of
a triangle are called the face (the part in the middle), the edge (the line between corners), and the vertex
(where the edges meet). All triangles have two faces (one viewed from inside the dome and one viewed from
outside the dome), three edges and three vertices. There can be many different lengths in edges and vertex-
angles in a triangle. All flat triangles have vertices that add up to 180 degrees however, triangles drawn on
spherical surfaces or other shaped surfaces do not have vertices that add up to 180 degrees. Geodesic domes
require that all the triangles are flat.

Image reference: http://www.kwsi.com/ynhti/images/imagell
Image reference: http://www.kwsi.com/ynhti/images/imagel2

One kind of triangle is an equilateral triangle, which has three edges of identical length and three vertices of
an identical angle (60 degrees). There are no equilateral triangles in a geodesic dome, although the
differences in the edges and vertices are not always immediately visible. This particular geodesic dome uses
three different edge lengths and two types of triangles.

Edge Lengths: A = .3486 B = .4035 C = .4124

The edge lengths listed above can be measured in any way you like (including inches or centimeters); what is
important is to preserve their relationship. For example, if you make edge A 34.86 centimeters long, make
edge B 40.35 centimeters long and edge C 41.24 centimeters long. This dome has a radius of one: that is, to
make a dome where the distance from the center to the outside is equal to one (one meter, one mile, etc.)
you will use panels that are divisions of one by these amounts. So if you know you want a dome with a
diameter of one, you know you need an A strut that is one divided by .3486.

The triangles can be constructed by their angles. Do you need to measure an AA angle that is exactly
60.708416 degrees? Not for this model: measuring to two decimal places should be enough. The full angle is
provided here to show that the three vertices of the AAB panels and the three vertices of the CCB panels each
add up to 180 degrees.

Vertices:
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AA = 60.708416 AB = 58.583164 CC = 60.708416 CB = 58.583164

1. The dome requires seventy-five (75) triangles with two C edges and one B edge. These are labeled CCB
panels below because they have two C edges and one B edge. The dome also requires thirty (30) triangles
with two A edges and one B edge, including a foldable flap on each edge for joining triangle-to-triangle with
the chosen paper fasteners or glue. These panels are labeled AAB panels below, because they have two A
edges and one B edge. The panel count per type should be: 75 CCB panels and 30 AAB panels.

Image reference: http://www.kwsi.com/ynhti/images/imagel3
Image reference: http://www.kwsi.com/ynhti/images/imagel4

2. Connect the C edges of six CCB panels to form a hexagon (six-sided shape); the outer edge of the hexagon
should be all B edges. Construct ten hexagons from six CCB panels. After this construction these hexagons are
not flat; instead they are a very shallow dome.

Image reference: http://www.kwsi.com/ynhti/images/imagel5

3. From the remaining CCB panels construct five half hexagons in which the three B vertices touch and four of
the six C edges touch.

Image reference: http://www.kwsi.com/ynhti/images/imagel6

4. Connect the A edges of five AAB panels to form a pentagon (five-sided shape); the outer edges of the
pentagon should all be B edges. Create six pentagons of five AAB panels. The pentagons will also form a very
shallow dome.

Image reference: http://www.kwsi.com/ynhti/images/imagel7

5. This geodesic dome is built from the top downward and outward. One of the pentagons made of AAB panels
is will be the top. Connect five hexagons to one of the pentagons; the B edges of the hexagons are the same
length as the B edges of the pentagon, so the connection should be seamless. It should become apparent that
the shallow curvatures of the hexagonal and pentagonal panels form a less shallow dome when joined
together.

Image reference: http:/www.kwsi.com/ynhti/images/imagel8
Image reference: http:/www.kwsi.com/ynhti/images/imagel9

6. Connect five pentagons and to the outer edges of five of the hexagons. These connections should join the B
edges.

Image reference: http:/www.kwsi.com/ynhti/images/image20
7. Connect six hexagons to the outer B edges of the pentagons and the hexagons.
Image reference: http:/www.kwsi.com/ynhti/images/image21

8. Connect the five half hexagons to the outer edges of the hexagons.
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Image reference: http:/www.kwsi.com/ynhti/images/image22

This geodesic dome comprises the equivalent of 5/8ths of a sphere, and is identified as a three-frequency (3)
dome. The frequency of a dome is measured by the number of edges from the center of one pentagon to the
center of the next pentagon. If the frequency of a geodesic dome is increased, by increasing the number of
edges between neighboring pentagons, the spherical appearance of a dome is increased.

Students can explore the realities of dome-applications. Perhaps this dome could become a greenhouse, or
house, or school, or corporate park. Perhaps it should be located beneath the ocean, or in outer space, even
orbiting the Earth. In further detail, if this dome were a building: where would the doors and windows be
located?

Alternatively, this dome can be constructed of struts, in lieu of panels, by maintaining the same length ratios
referenced above. The required struts are: 30 type A struts; 55 type B struts; and 80 type C struts.

Phase 3: Deployment and/or Execution of the Program

As in any sound lesson plan, assessments should be performed throughout the Phases of these lessons.
Perhaps starting with demonstrating a student's comprehension of the parts and concluding with
demonstrating a student's comprehension of the total dome is a rational approach to these metrics.

Therefore, students can be assigned the mathematical content and eventual construction of a panel, or a
strut, or an entire geodesic dome. Each student will be assessed pursuant to a rubric. Rubric guidelines will
contain scoring their calculations, their ability to perform cooperatively and individually. All should conform to
NHSD, state and national standards.

Appendix

a) A Student-generated Glossary from the following vocabulary words is recommended.
(table available in print form)
b) Computer Programmed Geodesic Calculations

There are programs for many of the calculations required in designing geodesic domes (including the geodesic
algorithm). Exploring these algorithms and the packaged programs provides an essential technology tangent
to the more traditional teaching methods.
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