John P. Crotty
a) Rationale.
Imagine your students actively involved in a learning activity. If you’ve been teaching for a while, you have undoubtedly developed certain lessons that you look forward to teaching. You are probably also always on the lookout for new ones.
Paper airplanes seem like a good topic for such a lesson. From the beginnings of time, man has been interested in flying through the sky. Ancient religions made the heavens the realm of their gods. The gods did not suffer our limitations of being restricted to the earth. Man looked to the birds and saw freedom. Where we plodded, the birds soared. Paper airplanes offer students the opportunity to step back from daily routines and pressures and enter the fanciful world of flight.
The freedom of design inherent in paper airplanes appeals to many youngsters. They enjoy taking a piece of paper, folding it into whatever shape they desire, and flying their particular creation across the room. Another child then tries to build a plane that will fly straighter or farther or longer. Each person can participate in a critique of each other’s plane. The special aerodynamic skills the students have acquired will be heard in comments such as, “Your nose is too heavy; your wings should be wider; your tail is too long.”
As a teacher, you love it. Your students are interacting productively. Children, of different ability levels, are making an effort to learn. It is obvious that both you and your students are enjoying yourselves. And, as an added plus, the price to produce the lesson is right. How much does a piece of paper cost? You can even use rejected sheets from the copier.
I have spent time, money and effort developing this unit because I believe that children deserve lessons that will spark their interest while being enjoyable and educational. Working with paper airplanes allows students to solve problems by using their imagination and deductive powers. Students like to meet and overcome challenges. They like sharing their solutions with their classmates.
I also believe that children are intrinsically good; that they do want to learn. If you can create an atmosphere where the onus of learning is on the child, most of the class will respond to challenge. Because an intellectually stimulating learning environment exists in your classroom, the students will keep each other in line. You will not have to be a cop; you can be a teacher. The child will look forward to coming to school or at least to your class, and you’ll look forward to being with him.
I hope that you will find this unit useful in your teaching career. At the very least, treat yourself to one of the books listed in the bibliography. In addition to increasing your knowledge, you’ll have hours of fun making and flying the paper airplanes that the book describes.
This is the third unit I have written for the Yale-New Haven Teachers Institute which uses elements from the child’s everyday environment. I strongly believe in using data or examples which are drawn from the student’s life experiences. My contention is that even if there were nothing special in paper airplanes, the fact that everyone has at sometime made a paper airplane is reason enough to study them. When a child brings past experiences to the learning process, he is able to build on and go beyond himself.
Every child in the class can become involved in a project involving paper airplanes. Some students will attack every sheet of paper in sight. When I introduced paper airplanes this year, some of the boys in my fifth period class would skip their lunch to test their designs. These students were totally convinced that every one of their airplanes was a champion flier. One day, one of the planes wouldn’t fly in the confines of the classroom. The logical solution was to launch the plane into the courtyard from my second-story classroom window. My boss observed the flight and walked up the stairs to my classroom. At first, he was reluctant to believe that the flight had been made in the name of science. But the enthusiasm of my students, convinced him that learning was taking place. On my final evaluation, he commented favorably that I made an effort to reach all the students in my class.
Other students have more reserved dispositions. They want to weigh their options before they enter into a new activity. Some of these students are overly concerned with not appearing foolish to their peer group. These students can be judges for the contests. I use more than one person for these tasks. For example, in a swim meet, there are three timers. The high and low time are discarded, leaving the middle time as the official time. When you use this system, you remove the pressure from the individual. After he has timed a few flights and compares the times he has recorded with his fellow timers, he sees that he is able to perform the task. He becomes more confident and assertive. Some students enjoy this position of authority very much and take a dominant role in the running of the contest. Other students, now that they feel more confident, cross over and become contestants.
Some of your students are good poets or artists. I have had them draw pictures and write poems about flying. I have found that the rest of the class respects artistic talent. The students know who the artists are, but many teachers don’t. I was finally able to reach one girl this year when I became aware that she was a poet. With her new identity, excellent poet rather than struggling math student, she was able to raise her grade from “D’s” to “B’s.”
Working with paper airplanes, allows a student the opportunity to explore, design, redesign and even do independent study. When your airplane doesn’t fly as well as your classmates, the first thing you’ll probably do is to look in a book for a better design. You’ll discover that different wing shapes possess different flight characteristics. For example, if you want a long duration flight, you would make a plane with a large wing area.
A student uses the theoretically correct design and still his neighbor’s plane flies better. Now you tell the student to check his work. How many times do your students just do the assignment and that’s it? I’m constantly amazed how a student will arrive at a figure of $15 sales tax on a $2 item and not think that anything is amiss. But, a paper airplane presents a different story. The reason that most paper airplanes don’t fly well is that they have not been properly adjusted.
There is more than one step to adjusting a plane. You should inspect it from the front. Is the fuselage curved? Are the wings warped? Inspect the plane from the side. Are the edges of the left and right wing parallel? How badly the student wants a good flier, will determine how much effort he will put into adjusting his plane. But that’s okay Now the students can’t look at you like you’re crazy when you tell them to correct the mistakes on their spreadsheet until it’s perfect. Oh, they’ll still complain, but I remind them how the effort they put forth in fixing their plane improved its performance.
Paper airplanes have a universal appeal. An excellent curriculum idea would be to hold a paper airplane contest. On researching the idea, I discovered that there had been two international paper airplane contests.
b) 1st International Paper Airplane Competition.
In the winter of 1966,
Scientific American
used an unusual method to attract new subscribers. It sponsored the 1st International Paper Airplane Competition. At that point in time, France and England had just announced that they were jointly going to produce the Concorde, the world’s first supersonic transport plane. The aircraft manufacturers in the United States were gearing up efforts to get their share of the supersonic transport (SST) market.
The editors of
Scientific American
noticed that the models for the SST bore a striking resemblance to the paper airplanes that they had made thirty years ago when they were in their youth.
Scientific American
used this resemblance in their advertising campaign. It asked paper airplane aficionados if, at this moment, they had a design which would make the still unproduced SST thirty years obsolete.
As luck or stealth would have it,
Scientific Americanos
advertisement for its contest appeared in
The New York Times
on December 12, 1966, on page thirty-seven. Lockheed-California Corporation’s advertisement for the SST appeared in the same issue of
The New York Times
on page thirty-eight.
Scientific American
said that the contest was just for fun and that no comment on the SST was intended.
You may ask, “How many people entered the contest”? There were 11,851 entries from 5,144 people living in forty-nine states and twenty-eight different countries. Five thousand of the entries were from children. Japan with 750 entries was the foreign country with the most entries. There were almost one thousand entries submitted by women. With such a turnout from such a diverse base, it would seem that paper airplanes would make an excellent educational topic.
The contestants took pride in their planes. Most of the entries were mailed inside of empty cereal boxes. The smallest plane measured .08 inches by .00003 inches. The largest entry was eleven feet.
The contest was broken into professional and nonprofessional categories, where a professional was someone who worked in the aeronautic field or who was a subscriber to
Scientific American.
There were four events: duration aloft, distance flown, aerobatics and origami.
After preliminary flights in the hallways of
Scientific
American, the finals were held in the New York Hall of Science. The event was covered by press from the United States and from abroad. In the nonprofessional class, the winning time aloft was 9.9 seconds and the winning distance was 58’2”. In the professional class the winning time aloft was 10.2 seconds and 91’6” was the winning distance. This plane would have flown farther, but it hit the back wall. The gymnasiums in our schools are large enough to house such a contest.
Was the contest educational? I would say, “Yes.” Frederick Hooven’s winning entry in the time aloft event was a flying wing. Flying-wing designs are controversial. Since it has no fuselage, a flying wing has an excellent lift-to-drag ratio. Unfortunately, a pilot has a hard time controlling them. Edwards Air Force Base in California is named after Glen Edwards, a test pilot who died in a plane crash while testing a flying wing. Now however, airplanes have computers to control flight. In fact the Grumman forward-swept-wing fighters were designed to be unstable. This made them more maneuverable.
There were also circular models, which were accepted as a valid shape. Flying saucers have been the shape of science fiction. They could be the shape of the future.
c) Second Great International Paper Airplane Contest.
The Second Great International Paper Airplane Contest was held on May 24,1985, in the Seattle Kingdome.
Science 86
, Seattle’s Museum of Flight, and the Smithsonian Institution’s National Air and Space Museum sponsored the contest.
Whereas the first contest was held for fun, the alleged reason for this contest was to see if paper-airplane design had kept pace with real-aircraft design in the eighteen years since the first contest. Instead of using metal, airplanes were now being made from layers of plastic bonded together with super-strength glue. This construction is lighter and stronger than metal.
Staying consistent with the current construction methods, the Second Great International Paper Airplane Contest allowed contestants to make their paper airplanes from glued layers of paper. The organizers wanted to see if the laminated models would better the records of the first contest.
This contest retained the events and categories of the first contest. It also added a junior category for children under fourteen. This time 4,348 planes from twenty-one countries were entered. The judges were busy; a plane took off every four seconds.
As you might have predicted, the laminated models were superior. In the professional category, the winning distance was 122 feet eight inches. The plane, a laminated design of Akio Kobayashi of Tokyo, Japan, had a length of 9 inches, a wingspan of 8.5 inches and a height of 2.5 inches. The time-aloft winner was designed by Tatuo Yoshida of Yokohama, Japan. His laminated plane remained in the air for 16.06 seconds. The plane had a length of 10.5 inches, a wingspan of 9 inches and a height of one inch.
In the nonprofessional category, the winning plane in the distance event was a dart design of Robert Meuser of Oakland, California. His plane, which flew 141 feet 4 inches, had a length of 13.5 inches and dart wings of 2.5 inches on the front and 3.75 inches on the back. Meuser also won the distance category in the 1st Great International Paper Airplane Contest. First place in the time aloft went to Yoshiharu Ishii of Osaka, Japan. His laminated plane remained in the air for 9.8 seconds.
In the junior category, first place in distance went to Eltin Lucero, a twelve-year old from Pueblo, Colorado. His classical paper plane flew 114 feet 8 inches. It had a length of 9.75 inches, a width of 6.5 inches and a height of 1.25 inches. Hironori Kurisu of Osaka, Japan won the time-aloft event. The ten-year-old’s laminated plane remained in the air for 11.28 seconds.
I mentioned the winners because most of them are from Japan. The Japanese are known for being hard working and paying attention to detail. Mr. Meuser said that the trick to building a good paper airplane was to spend time adjusting it. I see that as a main message. The Japanese are spending the time; maybe paper airplanes could help encourage our children to pay attention to detail.
I was talking to a pilot for the Barnes Group and he told me that tests are being made on circular wings. These wings start on the fuselage and end on the fuselage. The one continuous circular wing is structurally much stronger than the conventional pair of wings. The winning entry in the aesthetics event, nonprofessional category was a plane with a circular wing. Maybe there are ideas to be learned from paper planes.
As I continued my research on paper planes, I discovered that the object which went the farthest in the nonprofessional category was a paper aerobie. Cut out the center of a flying saucer and you have an aerobie, a flying ring with unbelievable flight characteristics. The organizers disallowed the round shape as not being a
bona fide
paper airplane. Yet as noted earlier, flying saucers were allowed in the first contest. The aerobie is so unequaled in hand-propelled flight, it will be discussed in its own section. So besides controversy, we see innovative ideas in paper planes.
I have tried to show that this unit is intended for teachers who enjoy being teachers. It is for teachers who are not afraid to have fun with their students, who enjoy a classroom with a high energy level, who feel that a pleasant atmosphere can also be academic. It is for teachers who are looking for different motivations to add to their teaching repertoire.